1,277 research outputs found

    Self-rated health in middle-aged and elderly Chinese : distribution, determinants and associations with cardio-metabolic risk factors

    Get PDF
    Background: Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese. Methods: Survey of 1,458 men and 1,831 women aged 50 to 70 years, conducted in one urban and two rural areas of Beijing and Shanghai in 2005. SRH status was measured and categorized as good (very good and good) vs. not good (fair, poor and very poor). Determinants of SRH and associations with biomarkers of cardio-metabolic diseases were evaluated using logistic regression. Results: Thirty two percent of participants reported good SRH. Males and rural residents tended to report good SRH. After adjusting for potential confounders, residence, physical activity, employment status, sleep quality and presence of diabetes, cardiovascular disease, and depression were the main determinants of SRH. Those free from cardiovascular disease (OR 3.68; 95%CI 2.39; 5.66), rural residents (OR 1.89; 95% CI 1.47; 2.43), non-depressed participants (OR 2.50; 95% CI 1.67; 3.73) and those with good sleep quality (OR 2.95; 95% CI 2.22; 3.91) had almost twice or over the chance of reporting good SRH compared to their counterparts. There were significant associations -and trend- between SRH and levels of inflammatory markers, insulin levels and insulin resistance. Conclusion: Only one third of middle-aged and elderly Chinese assessed their health status as good or very good. Although further longitudinal studies are required to confirm our findings, interventions targeting social inequalities, lifestyle patterns might not only contribute to prevent chronic morbidity but as well to improve populations' perceived health

    Self assembled monolayer films of C-60 on O,O'-bis(2-aminoethyl)dithiophosphate modified copper

    Get PDF
    On the surface of O,O'-bis(2-aminoethyl) dithiophosphate modified copper C-60 forms self-assembled monolayer films (SAMs) through the chemical bond The film was characterized by contact angle, X-ray photoelectron spectroscopy, electrochemistry, TOF Mass Spectropy

    HUWE1 cooperates with RAS activation to control leukemia cell proliferation and human hematopoietic stem cells differentiation fate

    Get PDF
    Acute myeloid leukemia (AML) is a poor prognosis hematopoietic malignance characterized by abnormal proliferation and differentiation of hematopoietic stem cells (HSCs). Although advances in treatment have greatly improved survival rates in young patients, in the elderly population, ~70% of patients present poor prognosis. A pan-cancer analysis on the TCGA cohort showed that AML has the second higher HUWE1 expression in tumor samples among all cancer types. In addition, pathway enrichment analysis pointed to RAS signaling cascade as one of the most important pathways associated to HUWE1 expression in this particular AML cohort. In silico analysis for biological processes enrichment also revealed that HUWE1 expression is correlated with 13 genes involved in myeloid differentiation. Therefore, to understand the role of HUWE1 in human hematopoietic stem and progenitor cells (HSPC) we constitutively expressed KRASG12V oncogene concomitantly to HUWE1 knockdown in stromal co-cultures. The results showed that, in the context of KRASG12V, HUWE1 significantly reduces cell cumulative growth and changes myeloid differentiation profile of HSPCs. Overall, these observations suggest that HUWE1 might contribute to leukemic cell proliferation and impact myeloid differentiation of human HSCs, thus providing new venues for RAS-driven leukemia targeted therapy approach

    Mood and Behaviors of Adolescents With Depression in a Longitudinal Study Before and During the COVID-19 Pandemic

    Get PDF
    Objective: To investigate whether, compared to pre-pandemic levels, depressive and anxiety symptoms in adolescents with depression increased during the pandemic. Method: We used data from National Institute of Mental Health Characterization and Treatment of Depression (NIMH CAT-D) cohort, a longitudinal case-control study that started pre-pandemic. Most of the participants are from the states of Maryland and Virginia in the United States. We compared depressive symptoms (1,820 measurements; 519 measurements pre-pandemic and 1,302 during the pandemic) and anxiety symptoms (1,800 measurements; 508 measurements pre-pandemic and 1,292 ratings during the pandemic) of 166 adolescents (109 girls, 96 adolescents with depression) before and during the pandemic. Data were collected during yearly clinical visits, interim 4-month follow-up visits, inpatient stays, and weekly outpatient sessions, with additional data collection during the pandemic. Pre-pandemic, healthy volunteers (HVs) had a median of 1 depressive and anxiety rating (range, 1-3), and adolescents with depression had a median of 2 ratings (anxiety rating range, 1-25; depressive rating range, 1-26). During the pandemic, HVs had a median of 8 anxiety ratings and 9 depressive ratings (range, 1-13), and adolescents with depression had a median of 7 anxiety and depressive ratings (range, 1-29). We also analyzed adolescent- and parent-reported behaviors in the CoRonavIruS Health Impact Survey (CRISIS), totaling 920 self-reported measures for 164 adolescents (112 girls, 92 adolescents with depression). HVs had a median of 7 surveys (range, 1-8), and adolescents with depression had a median of 5 surveys (range, 1-8). Results: Pre-pandemic, adolescents with depression had a mean depressive score of 11.16 (95% CI = 10.10, 12.22) and HVs had a mean depressive score of 1.76 (95% CI = 0.40, 3.13), a difference of 9.40 points (95% CI = 7.78, 11.01). During the pandemic, this difference decreased by 22.6% (2.05 points, 95% CI = 0.71, 3.40, p = .003) due to 0.89 points decrease in severity of scores in adolescents with depression (95% CI = 0.08, 1.70, p = .032) and 1.16 points increase in HVs’ depressive symptoms (95% CI = 0.10, 2.23, p = .032). Compared to their pre-pandemic levels, adolescents with depression reported overall lower anxiety symptoms during the pandemic. Parent-on-child reports also were consistent with these results. Conclusion: Contrary to our hypothesis, we found that both depressive and anxiety symptoms were lower for adolescents with depression during the pandemic compared to before. In contrast, the depression scores for the HVs were higher during the pandemic relative to their pre-pandemic ratings; these scores remained much lower than those of adolescents with depression. Clinical trial registration information: Characterization and Treatment of Adolescent Depression; https://clinicaltrials.gov/; NCT03388606

    Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators

    Get PDF
    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-BCS behavior. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic

    Sleep quality in middle-aged and elderly Chinese: distribution, associated factors and associations with cardio-metabolic risk factors

    Get PDF
    Background Poor sleep quality has been associated with increased risk of heart disease, diabetes and mortality. However, limited information exists on the distribution and determinants of sleep quality and its associations with cardio-metabolic risk factors in Chinese populations. We aimed to evaluate this in the current study. Methods A cross-sectional survey conducted in 2005 of 1,458 men and 1,831 women aged 50–70 years from urban and rural areas of Beijing and Shanghai. Using a questionnaire, sleep quality was measured in levels of well, common and poor. Comprehensive measures of socio-demographical and health factors and biomarkers of cardio-metabolic disease were recorded. These were evaluated in association with sleep quality using logistic regression models. Results Half of the population reported good sleep quality. After adjusting for potential confounders, women and Beijing residents had almost half the probability to report good sleep quality. Good physical and mental health (good levels of self-rated health (OR 2.48; 95%CI 2.08 to 2.96) and no depression (OR 4.05; 95%CI 3.12 to 5.26)) related to an increased chance of reporting good sleep quality, whereas short sleep duration (<7 hrs OR 0.10; 95%CI 0.07 to 0.14)) decreased it substantially. There were significant associations between levels of sleep quality and concentrations of plasma insulin, total and LDL cholesterol, and index of insulin resistance. Conclusion Levels of good sleep quality in middle-age and elderly Chinese were low. Gender, geographical location, self-rated health, depression and sleep quantity were major factors associated with sleep quality. Prospective studies are required to distil the factors that determine sleep quality and the effects that sleep patterns exert on cardio-metabolic health

    Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.

    Get PDF
    In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells

    Get PDF
    Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum
    corecore